

uNcLASSIFIED
- SECURITY C sIr tCi~T (O t4)F TH IS P A G E (Wh.n I).,. ~~~~ •

I EPORT DOCUMENTAT~O~4 ~~~~ RE F ORE CD9 PLET !Nr, FO R M
-

--
~ . GOVT ACC ESSION NO. 3 RECI P IENT ~~ A T A L . ~~ N U M B E R

4. T I T L E (and ub t i t l .) S. TY PE OF R E° O RT &_PERI.a.~~ cQv E R E O
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -

~ 1

YSTE~-~~ENCI ~ EE~ :::C TECH~~ U~:ES ~~R • q / int~~im ~ ~
. /

ART 1F 1cIAL INTELLI GENCE S’ STE~~S - f ~- ~~~~~~~~~~~~~~~~~ ~~~I flE~~~ R4UMBER

m~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~~~~~~~~~ —-
7. AUT ii OR(,) .—. - - a. CO NTRACT OR (i)

9 PERFO RMING O R Q A N~ A ‘~ H A M S AH ADC $5

Carnegie-Mellon University - - •
~~ -

Computer Science Dept. .. .— 61101E (/Lji 7 : G
Pittsburgh, PA 15213 A~O2466/7~~’1
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT

~~~
____-_ 

~r
- : Defen~e Advanced Research Projects Agency II Dec 77

1490 Wilson Blvd 1~ 2: t— 13 .  NUMBER

Ar1in~ton, VA 22209 / / J 21
14 . MONITORING AGENCY NAME & AO ORESS ( I(  differ ,.~.. t. onlro$lind Office) IS. S E C U R I T Y  CLASS. (of Chic r.port) ~~~~~~~

Air Force Office of Scientific Research (NM) UNCLASSIFIED
Boiling AFB, DC 20332 ____________________________

- ISa . DE C L A S S I F I CA -

SCHEDULE

- 
• 

16. O IST RI8UT IO N S T A T E M E N T  (of t hi s  Report)

Approved for public release; distribution unlimited .

17. DISTRIBUTION STATEMENT (of Cit. ab.tr.ct •nt. r.d In Block 20, If  dii lereni from R.po,t)

14. S UPPLEMEN TARY NOTES

19. KEY WORDS (Continu. on r.v•rs. aid. if n.c...ary and id.nhiiv by block numb.r)

20. A B S T R A CT (Continue on r.VC ’ae aid. II Iace.aary and Identify by block numb.,)
It is impossible to develop a large knowledge-based artificial intelligence sys-
tem successfully without careful attention to issues of system engineering. A
set of principles is presented for organizing the design and implementation of
such a system. Problems of maintainability and configuration control, human
engineering, performance analysis , and efficiency must be faced. Tools used to
solve these problems are described , along with examples of their use in the
Hearsay-Il speech understanding system. -

- 

~~~~~~~~~~~ ,/ .
-

DD I ~~~~~~~
1473 EDITION OF I NOV 69 IS OØSOt. ETE UNClASSIFIED

S - N ~~IO 2 0 I 4 AA O l
S E C U R I T Y C L A S S I F I C A T I O N OF T W I S PAGE ($Sten D.’. 4ni~ ted)

--
~~~~~~~~~~~

--- ---• •
~~~~~
-

SYSTEM ENGINEERING TECHNIQUES FOR
- .

-

ARTIFICIAL INTELLIGENCE SYST EMS

Lee 0. Erman and
•
Victor R. Lesser

Dept. of Computer Science Dept. of Computer & Information Science
Carnegie-Mellon University University of Massachusetts

Pittsburgh, Pa. 15213 - Amherst, Mass. 01003

December, 1977

- -

• ABSTRACT1 - •

It is impossible to develop a large know’edge-based artiftcial intelligence system
successfully without careful attention to issues of system engineering. A set of
principles is presented for organizing the design and implementation of such a
system. Problems of maintainability and configuration control, human engineering,
performance analysis, and efficiency must be faced. Tools used to solve these
problem s are described, along with examples of their use In the Hearsay-I!
speech understanding system.

This i~ a slightly revised version of a chapter to appear in A. Hanson and
E. Risernan (eds.), Computer Vuion Systems, Academic Press, 1978.

~~~~~~~~~~~~~~ 

~~~~~

• - 1 This work was supported at Carnegie-Mellon University by the Defense Advanced
-

- Research Projects Agency (F44620- 73-C-0074) and is monitored by the Air Force
Office of Scientific Research,.. ,

~
(

•~

• /
•

- INTRODUCTION -

• -
. In the last several years, there has been a trend in Artificial Intelligence (Al)

• research to develop high-performance systems specialized for particular problem
domains (e.g., medical diagnosis, chemical analysis, image understanding, and speech

4 understanding). In order to attain the high performance desired, these systems need
to use a large amount of problem-specific knowledge and, of ten, large numbers of
heuristics. These systems are commonly called lcnowledge_basedw systems, which
differentiates them from the oar!ier Al systems that used a small number of general
heuristics and little problem-oriented knowledge.

Several of the characteristics common to high-performance knowledge-based
systems have significant implications for their development:

1. The systems are Iarae. because of the large amount of knowledge; they are
•

.
often structurally complex, because of the diversity of their knowledge and the
complexity of the heuristics required for apply ing this knowledge.

2. The development of such systems is marked by much experimentation and
- redeskn. This occurs because the problem is not well enough understood to

enable the knowledge needed or the methods of its application to be Pr.—
specified. In addition, because the knowledge and heuristics interact in a
complex way, models cannot be built to predict the system’s performance --
instead, the system itself must be run. -

3. The systems are computation&’j ~~pensive (in time and/or space). Part of the
expense is inherent in the problem domain and in the demands of high-

• performance. The expense is increased because the knowledge is Imperfect
and the strategies for applying it are not optimal. Much of the cost often
manifests itself as search for a problem solution within a large space.

4. Many researchers may be needed to develop such a system and they may have
diverse expertise. Th. system must provide a structure for coordinating their
individual efforts. - •

Thesis: - . -

- We believe that it u Sin possible to develop a high-performance , knowledge -
based System suceessf ttUy without careful attention to system engineering -

considerations derived - from the characteristics listed above. These
considerations dictate the tools needed for the system. Many of these

- tools are missing in even the most sophisticated general-purpose
• computing environments and must be built. Many of the tools that already

exist must be modified to make them suitable for the special demands of- -
- these systems. Thus, there must be a flexibility and a willingness to

- experiment with ~ij levels of the computing facility -- hardware, firmware, . •
-

• operating system, programming system, terminal system, etc.

1


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -

~~~

-

INTRODUCTION

In expanding this thesis, which is based primarily on our experience In a long—
term effort in building speech understanding systems, we will address the following
four problems that we have found to be crucial2z

The Mair~tainability and Confinurability Problem: -

The system is constantly evolving in an asynchronous manner, with various
components in different states of development. No component is ever ~finalIy”
stabilized, but is subject to further modification and reimplementation. In the face of
this flux, the system must be usable by each researcher when he wants it, independent
of the ongoing modifications being made by others to components not directly of
interest to him. Modification of a component should require minimal if any
modifications to other components.

While - developing one component of the system, it is often desirable to be able
to experiment with that component in relative isolation, i.e., with just enough of the
other components present to provide the necessary context. Thus, it should be easy
to configure a subsystem consisting of that necessary subset of components.

In addition, the software system should allow the user to configure a system
with the most up-to-date tested versions of components produced by the other
researchers, as long as they are consistent with the version of his component that he
would like to test. Thus, the system should automatically check that the configuration
being assembled is constructed from compatible versions of the various components. - -

The Human Engineering Problem:

Unless the system is relatively easy to use, it will be a confusing morass for the
researcher. When we speak of ihe” ‘researcher experimenting with and modifying the
system, we really mean many researchers with diverse interests and often significantly
different levels of expertise with computers and programming. ThUS the system design
must be sensitive to these varying interests and skills. For example, a researcher will
in general not be intimate with more than some fraction of the system. Thus, the
system must allow him to Interact affectively without having a detailed knowledge of
the components he has not considered.

2 These problems are faced in the design and implementation of any large
programming system. Research in sof tware engineering particularly relevant to the -

techniques discussed in this paper include Parnas (72] on modular decomposition;
Dij lcstra (68), Liskov (72], and Habermann et .1 (76] on hierarchical structuring;
Liskov and Zilles (74], Fion (75), Guttag (76], and Wuif at ci (76].on abstract data
types; and I4sbermann (78] and Cooprider (78) on configuration management
techniques.

2

-

— —
~~~

—- - . — — — -  ‘- —-

- - INTRODUCTION

The Performance Analysis Problem:

The major part of the experimentation is the refinement and augmentation of the
various pieces of knowledge and their interactions. To accomplish this, the researcher
must be able to determine the effects of each piece of knowledge. The complex
interactions between the large amounts of knowledge makes this analysis difficult.
Thus, the system must provide tools which make it easier for the researcher to isolate
and trace the effects of particular knowledge.

The Efficiency Problem:

The overall computational elf iciency is important for producing a usable
performance system, as well as for experimenting with the system during its
development. In a large and changing system, it is difficult and inappropriate to --

optimize across the whole system. Rather , an evolutionary approach is called for, in
which those aspec ts of the system that become bottlenecks are selectively optimized.

Eff iciency is a relative issue, based on the ways that the system Is being
stressed at each stage of development. The critical bottlenecks change as use of the
system evolves, as the system is changed in response to the changing use, and as
bottlenecks are removed through optimization. In order to support selective
optimization, the system must make it convenient to measure costs and re-implement
the components responsible for bottlenecks at the appropriate level (e.g., in micro-
code, in machine language, within the operating system, at some level within the
programming language, or at some level , within the implementation of the system).
Such modifications should require minimal modifications to other system components.

The next section presents a brief overview of the Hearsay-Il speech
understanding system, to provide a context for what follows. Although Hearsay-il is
used as the motivating example for this paper, we believe that the problems and
solutions presented are relevant to other Al system efforts , and, in fact , to many other
large system efforts as well. Following . the Hearsay-Il overview is a description of
several principles for organizing the system Implementation. Finally1 there Is a listing
of many of the key tools used In the Hearsay—li system. -

OVERVIEW OF HEARSAY-I! - 

-

• In 1971-72, the Hearsay-I speech Understanding system was developed it
Carnegie-Mellon University -- the first of a series of such systems. Hearsay-I (Reddy
et .1 73 and Erman 74] was a successful attempt to solve the problem of machine
understanding of speech in specialized task domains. In this early system, the size of
the vocabulary (fewer than 100 words) and -complexity of the grammar were very3



——-———

OVERVIEW OF HEARSAY-Il

limited. Experiences with Hearsay-I led to the more generalized Hearsay—Il
architecture (t.esser et al 75, and Erman and Lesser 753 in order to handle more
difficult problems (e.g., larger vocabularies and less-constrained grammars). The
Hearsay—Il system has been successfu’: it came close to the original ARPA
performance goals set out in 1971 to be met by (ho end of 1976 [Newell .t ii 73). Its
performance in September, 1976, was 90Z correct semantic interpretation of sentences
over a 1011-word vocabulary and constrained syntax (CMU 77].

The Hearsay- Il Architecture3

At the beginning of the Hearsay-il effort in 1973, based on our experiences
with Hearsay-I, we expected to need types of knowledge and interaction patterns
whose details could not be anticipated. (As mentioned above, this uncertainty is
characteristic of the development of knowledge-based systems.) Instead of designing

- 
a specific speech understanding system, we considered Hearsay-I! as a model for a
class of systems and a framework within which specific configurations of that general
model could be constructed and studied. One can think of Hearsay-Il as a high-level
system for programming speech understanding systems of a certain type -- i.e., those
that conform to the Hearsay-Il model.

In the Hearsay-Il model of knowledged-based systems, each of the diverse
typos of knowledge needed to solve a problem is encapsulated in a knowledge source
(KS). For speech understanding, typical I(Ss incorporate information about syntax,
semantics, acoustic-phonetics, prosodics, syllabification, coarticulation, etc. The current
Hearsay-Il system configuration has about ten KS modules. KSs are kept separate,
anonymous, and as lndependenl as possible, in order to make the creation) modification,
and testing of KS modules as easy as possible.

The KSs interact to solve the problem (i.e., interpret a spoken utterance) by
communicating via a shared global data-base called the blackboard. The blackboard Is
partitioned into distinct information levels (e.g., wphrase , Nwordw, ‘syftabte ”,- and
Nphone$); each level holds a different representation of the problem space. The
current state, of problem solution is represented in terms of hypotheses on the
blackboar d. An hypothesis Is an interpretation of a portion of the spoken utterance at
a particular level (e.g., an hypothesis might be that the word ‘today’ occurred from
millisecond 100 to millisecond 600 in the utterance). All hypotheses, no matter what
their level, have a uniform attribute-value structure. For examp le, each hypothesis has
attributes containing its level, begin- and end--time within the utterance, and
plausibility ratings. Hypotheses are connected through a directed graph structure,

3 Little attempt is made here to motivate this architecture from an Ai viewpoint. For
more information on Hearsay—It, ‘ see Lesser at aJ (75], Erman and Lesser (75], and
Lesser and Erman (77) -

4



OVERVIEW OF HEARSAY-I! 
- 

-

usually across leveis. 
-

Each knowledge source is activated in an asynchronous manner, based on the
occurrence on the blackboard of patterns, of hypotheses specific to its interests. Once
activated, a KS may examine the blackboard, typically in the vicinity of the hypotheses
that activated it. Based on its knowledge, the KS may then modify those hypotheses
or other hypotheses, or create new hypotheses. Such actions establish new patterns
on the blackboard; these potentially cause other KSs to be activated. This mechanism
for KS ac tivation implements a data-directed form of the hypothesize-and-test
paradigm.

The Hearsay-Il Implementation -

— - -— - -  Based on the model just described, a high-level programming system was - - -— - -  - -• -— -

- constructed to provide an environment for programming l(Ss, configuring groups of
them in to systems, and executing them. All interactions of KSs are via the blackboard
-- triggering on patterns, accessing hypotheses, and making modifications. Because
the blackboard has a uniform structure, KS interactions are also uniform. Thus, one set
of facilities can serve alt i(Ss. Facilities are provided for:

o defining the levels on the blackboard,
o configuring groups of KSs into runnable systems, -

o accessing and modifying hypotheses on the blackboard,
o activating and scheduling KSs.

These facili ties, along with other utilities to be described below, are called the
Hearsay—U ‘kernel’. The kernel is the high-level environment for creating and testing
KSs and configurations of them. . -

Hearsay—Il is implemented in the SAIL programming system [Reiser 76], an
Algol6O dialect which has a sophisticated compile-time macro facility and a large
number of data structures (including lists and sets) and control modes which are
implemented fairly efficiently. The Hearsay—Il kernel provides a high-level
environment to KSs at compile-time by extending SAIL’s data typos and syntax through
declarations of procedure calls, global variables, and complex macros. This extended
SAIL provides an explicit structure for the specif ication of a KS and its interaction with
other KSs (through the blackboard). The high-level environment also provides

• mechanisms that enable KSs to specify to the kernel (usually in non-procedural ways)
a variety of informa tion which the kernel uses when configuring a system, scheduling
KS activity, and controlling user interaction.

The knowledge in a KS is represented in SAIL data structures and code, In
whatever form the KS developer finds appropriate. The kernel environment provides

- the facilities for structuring the interface between this knowledge and the other KSs,
via the blackboard. For example, the syntax KS contains a grammar for the specialized

• 

• 

_
~

_
~•± 

5

., _ _



OVERVIEW OF HEARSAY-I!

task language that is to 1)0 recognized; this grammar is in a compact, network form.
The KS also contains procedures for searching this network, for example, to parse a
sequence of words. The kernel provides facilities (1) for triggering this KS wheq~ever
new word hypotheses appear on the blackboard, (2) for the KS to read those word
hypotheses (in order to find the sequence of words to be parsed), and (3) for the KS
to create new hypotheses on the blackboard, indicating the structure of the parse.

There are two aspects of KS specification In the Hearsay model which appear to -

drive an implementation in opposite directions -- one for diversity and the other for
uniformity:

-o Because the KSs are diverse, the kinds Of data and control structures that are
natural and efficient for their implementation are also diverse. No single pair

- of structures (e.g., lists as data structures and a production system as a control
- structure) is optimal. Thus, this first aspect pushes the implementation in the • ~

- ‘ 
.

, -

direction of diversity (1.e~, to provide a diverse set of KS-specific data and
control structures).

o Because the KSs are to cooperate, they most interface with the rest of the
system. Given that one needs to be able to add new KSs easily and construct
a set of utilities applicable to all KSs, it is desirable to have this interface be
uniform. In addition, if the interface declarations are designed properly, it
should be possible to make extensive modifications to the implementation of

- these facilit ies without having to modify the KSs. Thus, this second aspect
pushes the implementation in the direction of a uniform set of data and control
structures.

By having a uniform high-level framework for KS interaction while still permitting KS
developers to. code the knowledge in whatever form is found to be most convenient, an
appropriate balance has been struck between diversity and uniformity.

Develoàment of Hearsay-Il -

- 
The active development of Hearsay-Il extended for three years. About twenty

KS modules were developed during that time, eac h a one- or two-person effort lasting
from two months to three years. The modules range from about 10 to 200 pages of
source-code (wi th 60 pages typical); additionally, each KS has up to about 100K bytes
of information in its local d ata base. -

The kernel is about 300 pages of code. About one-third of that is made up of
the declarations and macros that create the extended environment for I($s. The
remainder is made up of the code for impiementing the architecture -- primarily
activation and schedulIng of KSs, maintenance of the blackboard, and a variety of other
standard utilities (to be described below). During the three years of active

6

--



OVERVIEW OF HEARSAY-Il

development, an average of about two full-time researc h programmers were
responsible for the implementation, modification, and maintenance of the kernel.
Included during this period were a half dozen major reimplomentations and scores of
minor ones; these changes usually were specializations or selective optimizations,
designed as experience with the system led to a better understanding of the usage of
the various constructs.

Implement ation of the f irst version of the kernel began in the autumn of 1973,
and was completed by two pe~pie in four months. The first major KS configuration,
though incomplete, was running in early 1975. The first complete configuration, called
“Cl”, was running in January, 1976. This configuration had very poor performance —-
less than 1OZ sentence accuracy over a 250-word vocabulary. Experience with this
configuration led to a substantially different KS configuration, “C2”, that performed
much better , coming very close, in September, 1976, to the original goals of the -

. 

-

project.

ORGANIZING PRINCIPLES

Four design principles were used in organizing the Hearsay-Il kernel and
surrounding facilities: . 

- 
-

o -The design should start with a general framework for KS interaction which is
then tailored as needed. -

Two of the principles are derived from the observation that a system is
naturally implemented as a series of levels , which form a loose hierarchy:

o In order to implement a complex system, all the supporting levels (hardware
through programming language) must be subject to change.

o The application to be implemented on top of the programming system level
should be implemented as a series of levels, rather than as a single level.

The fourth principle deals directly with the problem of experimentation:
a

o Facilities for analysis and debue,gin~ must be an integral part of the system
design from the beginning. -

Tailoring a General Framework

a The approach taken In the project was one of starting with a general model for
a class of speech systems and then specializing this general model based on

• experience. Three ways of tailoring can occur:

7 

— .-.- ---- ~~~~~~~~~~~~~~~~~~~~- ~------~~



ORGANIZING PRINCIPLES

o The elimination of excess generality, based on the ways the system is actually
• used. For example, Hoar~ay-II began with a set of complex primitives for

interconnect ing hypotheses across - levels; as experience was gained with real
KSs, it v~ ‘s discovered that these facilities could be simplified.

o The addition of new features, as needed. For example, the invocation of KSs
was expanded to include, for scheduling purposes, an abstract description of
the potential action of the KS.

o The reimplementation of existing features, for efficiency. For example, the
internal representation of hypotheses went through several reimp lementations,
based on changing usage patterns of the blackboard primitives.

The notion of a general framework provides a context for tailoring so that the overall
system retains a coherence, rather than evolving in a haphazard manner w ith one
change piling on the next.

Such an approach has a potential disadvantage: the start-up cost is relatively
high; the danger is that the model may be inadequate for keeping the high-level
system usable long enough to amortize those costs. However, if the framework is
suitable, it can be used to explore different configurations within the model more
easily than if each configuration were built in an ad hoc manner. Additionally, a natural
result of the continued use of any high-level system is its improvement in terms of
enhanced facilities, increased stability and efficiency, and more familiarity on the part
of the researchers using it. -

Hearsay—t i has been successful in this respect; we believe that the total cost of
creating the high-level system and using it to develop KS configurations Cl and C2
was less than it would have been to generate Cl and C2 in an ad hoc manner, It
should be stressed that the construction of even one configuration is itself an
experimental and evolving process. The high-level programming ~ystem provides a
framework , both conceptual and physical, for developing a configuration In an
incremental fashions The speed with which C2 was developed is some indication of the
~dvanIage of the system-design approach used in Hearsay-Il. And, we are still far
from exhausting the possibilities of the existing Hearsay-~Il framework.

Levels

The usual approach to building an application system is to take as given a
language system and its supporting levels (e.g., hardware, firmware , and operating
system) and construct the application directly on top of the language system.
However, for the efficient implementation of a complex application, It is often
necessary to modify these lower levels. For example, the Hearsay efforts led to these
modiflcetion~:

8



- •  ~~~~- - ~~~~~~~~~~~~~~~~~~ ---~~~~~~~~~~

- 

ORGANIZING PRINCIPLES

o At the hardware !~~~~~i:~~ Special-purpose audio devices were constructed. A 
•

hardware device-poller was constructed because the existing sof tware polling
on the PDP-lO was not fast enough to support the real-time audio devices.
Graphics terminals and printers were added to the system.

o At the operating system t~~ j: Highly optimized service routines were needed
to handle the audio and graphics devices. The scheduler was modified to

- 
handle real-time jobs and very large jobs in special ways. Changes were made

• in I/O handling to support overlaying efficiently.

o At 
- 

the language system !~~!i: The compile-time macro facility was greatly
- expanded, the memory allocator was modified to handle the demands of large,

long-running jobs, and an overlaying facility was added. In addition, the
compiler was modified so that it could be pre-initialized with thà kernel—
provided declarations, significantly decreasing the time to compile each KS. -

o At the utilities !~~~: The loader was modified to handle overlaying. - 
A cross—

referencing program was implemented which could dynamically search through
the many source-code files which make up the-kernel and the KSs.

In order to make such modifications, it is necessary to have both the expertise and
appropriate control over the computing facilities. -

The second principle concerning levels deals with the highest levels, those
usually lumped together and called the application level.5 As this level becomes more
complex, the implementation distance between it and the underlying language system
increases. Rather than trying to bridge this distance in a single jump, one or more
intermediate levels should be built. These layers should reflect the components and
structure of the application. Such a layered implementation is easier to understand,
debug, and modify because the complexity of interactions between components is
reduced.

For example, a KS in Hearsay-U modifies an attribute of an hypothesis on the
blackboard through four layers of procedures and macros: (1) At the highest level,
each attribute has its own modification macro, part of whose function is to append the
name of the modifying KS. (2) These macros call one of the modification procedures;
these routines are generalized over a set of the hypothesis attributes and do
paramCter checking (e.g., to insure that the thing pointed to is really an hypothesis and
that the new value is appropriate for the attrIbute). (3) These procedures In turn call
a lower level procedure which Is attribute-independent; this procedure Is also called

4 The system used has no microstoiei this level, however, Is becoming increasingly
attractive for application-dependent modification.

5 The fact that the highest level is conventionally called the “application” level is
indicative that the principle of modifying any necessary level is not usually adopted.
That is , most people consider only the level above the language-system as
application-dependent; all the lower levels are taken as Immutable. 

- 
-

9

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--

~ 



-~~~~~~~~~~~ -~~
-
~~~~~~~~~~~~~

--

~~~

- - ORGANIZING PRINCIPLES

directly by other kernel routines in places where the parameter checking Is not
required. (4) Finally, this procedure calls a macro which actually modifies the attribute.

By hiding, through such tayer~ of macros and procedure calls, the details of how
an hypothesis on the blackboard is stored and accessed, it has been possible to re—
implement these aspects of the blackboard with only minimal changes required
elsewhere; it has also allowed the addition of specialized options to the standard
retrieval commands for the needs of specific l(Ss without affecting other KSs. For
instanc e, during the lifetime of the project, the hypothesis storage and accessing
functions went through four major implementations: -

- Initially, .11 attribute/value pairs of an hypothesis were stored as an alt-ribute/
value list struc ture.6 

- - 
-

- This storage scheme was then modified so that Integer-valued attributes of an - 

-

hypothesis (e.g.. its rating and begin- and end-times) were stored as compacted
• bit-fields in a linear block of memory, thus permitting these fields to be

accessed by a simple index and byte extraction operation.

— Next, the storage of standard list attributes of an hypothesis (e.g., the list of
connected hypotheses) was changed into a compacted list structure with each

- list directly accessible through an index operation.

- Finally, optional attributes of an hypothesis were stored in a compacted
attribute/value list structure.

The net result of these optimization steps was an improvement of about an order of
magnitude in both storage space and accessing time. Similarly, other aspects of the
system, such as retrieval functions and their associated data bases, the scheduler, and
the activation records of KS processes- were successively reimplemented as we gained -

a better understanding of how these system functions were actually used1 both in
terms of time and space. Each of these changes resulted in significant increase of
system-wide efficiency, in some places orders of magnitude, without requiring any -

changes to the KS source-code, and only localized changes within the kernel.

Integrated Analysis and Debiigting Facilities -

The principle of having analysis and debugging facilities as an integral part of
the system design at all levels follows from several observations:

o Th. size and complexity of the system requs~e automatic analysis facilities

- 
- 6 The values of attributes can be Integers of varying numbers of bits or variable—

length lists or sets, each element being the name of some hypothesis or a small (12—
bit) integer. -

10 

____•— —



ORGANIZING PRINCIPLES

within the system; one cannot understand the internal functioning of the system
just by observing its external behavior.

o The experimental nature of a knowledge-based system results in modification
of- the system throughout Its lifetime. No part of the system is over “f inal”; any
par t Is subject to modification at any time and hence may need analysis and
debugging facili ties at any time.

o Debugging and analysis facilities are needed at levels within the system. In
particular, facilities appropriate to the application levels built on top of the
language system are crucial. Facilities provided within the language system
may be helpful but are not sufficient for ciebugging and analyzing the higher
levels. Data and control structures at higher levels should be displayed in
terms of concepts appropriate to the level rather than In terms of their
implementation in the base language (which might be several levels removed).
For example, the “rating-state” attribute of an hypothesis In Hearsay-U can
take on values from the set “unrated”, “accepted”, “rejected”, etc. Internally,
thece values are small integers; the KS developer, however, usually does not
want to see the integers, but rather their names.7

It is important to consider analysis and debugging facilities as an integral part of
the system design. Pragmatically, they are especially important when the system is
young, but must also endure as the system evolves. If their design is ad hoc and not
well-integrated, they will be difficult to modify to keep pace with the system
modification. 

. -

Good debugging and analysis facilities need not be computationally costly if
implemented with selective enabiing. In particular, compile-time disabling of such a
facility permits it to be retained in the system at no run-time cost; when needed again,
it can be re-enabled without code modification.

- 

SYSTEM-BUILDING TOOLS

The organizing principles outlined in the preceding section provided a context
for developing many of the toots In the Hearsay-Il system. Following Is a description
of these tools , classified roughly- in three groups: conf iguration management , user
interaction, and performance analysis. We feel that similar tools are required in any
large, knowledge-based system. Obviously, many other tools are possible; thos.
presented here were found useful for Hearsay-Il and indicate the broad range of
facilities required.

7 Notice that the external representation (I.e., the name) is independent of the internal
representation; one can optimize the Internal representation without sacrificing the

• natural representation used for Interac tion If appropriate facilities are included at
each implementation level. -

11 -



~~~~~~~~~~~~~~ ~~~~~~~~ -

SYSTEM-BUILDING TOOLS

Confl~ur atlon Manac~ement Tools

As described earlier, the configuration control problem Is one of selecting pieces
to comprise a system. An important aspect of this problem is ensuring the consistency

-
of those selections. In a complex system, there are a large number of selections that
need to be made in order to create and execute a configuration. For Hearsay-Il, some
of these include selecting:

o A version of the kernel. -

o A set of KSs and a version of each.

o The local knowledge base(s) for each selected KS. -

o Settings for the many local parameters which fine-tune the knowledge in the
KSs. - -

o The set of optional facilities (tracing, timing measurement, graphical display,
special-purpose anaiysla, etc.). -

o The vocabulary and grammar of the spoken language to be recognized.
(Languages of several different sizes and grammatical complexities were
developed). -

-

o The set of test data (utterances, either - live or “canned”) to be run through.

• . A simplified diagram of the sequence of events necessary to create a Hearsay—Il
conf iguration is given in Figure 1. The processors, represented in the figure by nodes, -

• include the SAIL compiler, the system linking loader, special-purpose compilers for
data-structures to be used, during system execution, and a runnable Hearsay—Il system.
For each process, a set of input ohiects must be specified, represented in the figure
by labeled arrows. The result of the execution of the process with the inputs is one
or more output objects. -

-

-

•

- In order to make the system usable; configuration management tools must be - -

- - provided which make it easy to ‘select the input objects for -each process. Mechanisms
•

- must also be provided for automatic consistency checkS across the specified input -

objects. For example, referring to the f.gure, such checking, should make sure that , all
the KS modules that are loaded together with the kernel module were originally
compiled with kernel declarations that match that version of the kernel load module.
Similarly, each data object module should be consistent with the accessing procedures
contained In I he corresponding KS object module that Is loaded with it. There - are a

- variety of other types of consIstency checks that need to go on. These occur during
all phases: compile-time, load-time, and execution-time. -

12

~
_
~~~

_ _



source code kernel source, code kernel source Cods kernelKS 1 declarations KS declarations ksrn t declarations

AlL Compiler 
~ o o AlL Compiler All Compiler

load module load module • 

oaci module
KS1 KS~ kernel

sç ecial-PurPose Loader load m1ule KS-specific data 
~ 

-

U ilities a a
pre-processor

11
load module KS-specific data 2• 

- data T o

runnable pre -processorsystem
speech 12 KS-specific dataInput 

- 
-

task
• - - 

- vocabulary - -

- additional KSdata structures

system - - -

execution• parameter settings
tor KSs

• 
gf~ PI1~C fil, output

terminal -

• - - 
output

Figure 1: Creating and executing a Hearsay—fl system (simplified).

13



~~~
- ‘-

SYSTEM-BUILDING TOOLS

in order to accomplish this consistency checking, each output object of a
-

processor is labeled w ith a header indicating the type of processing that occurred, the
version number of the program performing the processing, and a condensed form of
the header information of all the input ob’jecfs arid key parameter settings of the
processing. Before processing, the header information of the input objects is checked
in order to determine If those objects are consistent with each other and appropriate
for the processor and mode of processing selected.

Sometimes information in the headers of one or more of the input objects can be
• used by the processor to calculate the names and versions of the other Input objects

that are needed. This mechanism reduces the amount of information that the user
needs to specify explicitly (because it is redundant in the header informa tion in these
cases), simplifying the task and reducing the likelihood of error in the specification.

Another way to reduce the amount of external specification needed is by •

• building into the processors default values for selecting their input objects and
parame ter settings. Thus, only exceptions to the defaults need be specified. This
allows the researcher to build added flexibility into a processor without complicating
its control for those users not needing that flexibility. -

Although these techniques for automatic selection do reduce the total number of
parameters to be set and options to be selected, there are still many left to be
specified explicitly by the user. In general, command f~~s for processors greatly
simplify this task by clustering the specifications for “standard” configurations and
allowing them to be named. In addition to standard types of command files for the
compiler ,~and loader, a tailored “job control language” has been constructed in
Hearsay—Il for configuration control and user interaction at execution time. This
language permits a user to construct files, called cliche !fl~ 1 which contain sequences
of parameter settings and selection control for the various “processes” within an
executable Hearsay—Il system. Cliche files can contain commands to execute other
cliche files and to override parameter settings accomplished in previously executed
cliches. Nesting and resetting together provide a simple mechanism for construc ting
specialized configuration control files from a set of standard sub-configuration cliche
files.

The need for consistency checking at all - phases of the system cannot be
emphasized strongly enough. Errors resulting from Inconsistent configurations are the
most difficult to detect and trace to their sources. Early versions of the Hearsay—Il
system did very little such checking, resulting in many hours and days lost.

14

SYSTEM-BUILDING TOOLS

User Interaction Tools

Since this research is based on the philosophy of the experimental paradigm
• (build a system to try out ideas), the ease with which the researcher interacts with the

system is cruciaL

When we speak of the “researcher ” experimenting with and modifying the
• system, we really mean several researc hers with diverse interests and, perhaps,

significantly different levels of expertise with computers and programming. A user has
different goals at different times, thus providing the need for dIfferint interaction
modes for even a single researcher. The system design must be sensitive to these
vary ing interests and skills. In particular , the interaction facility must permit the user
to interact with the system at a high level, i.e., in ternis of the information units most

• natural to the way he is thinking about the problem.

In Hearsay—lI, the primary mode of user interaction is via a facility that permits
-

I the user at the terminal to display and modify in a high-level manner both kernel—
implemented data structures (e.g., the blackboard) and those specific to each KS. Since
the meanings and structures of KS-specific data bases are highly individualized, a
mechanism that allows for the display of data structures only in terms of their

•
implementation is inadequate. Rather, a debugging interface tailored for each KS is
necessary.

This interfac e should be integrated into the terminal interaction facility in a
coherent manner so that the researcher does not suffer from major changes in context
as he moves from one lnterf ace to another; similar actions by the user In different
interface packages should cause similar reactions by the system.

Each KS module in the Hearsay It system has its own package of routines for
interfacing with the researcher at his terminal. Each interface package is tailored to
the module, but they all share a common syntax. While “talking” with a module’s -

interface, the researcher may display and alter data, set break-points In the module,
and execute actions of the module. In addition, he may - set switches that enable data
dumping at prescribed points during the module’s processing; this data may be dumped
at the terminal and/or to a file for later processing.

• Multiple special-purpose interfaces might seem to require much more
programming than a single Interf ace. In fact , this is not true. The kernel provides
macros and associated procedures which enable a user to build this interface easily.
For example, a macro, called MakeVariable, Is provided which permits a user to declare

• a SAIL. variable In his KS while also specifying routines to be used to display and
update the value of the variable at the termInal. In addItion, the user has the choice of
building his own display and update routines or choosing from a predefined set in the
kernel. An example of a declaration using built-in display routines is the following:

• 15

_ _ -~~~~ -

SYSTEM-BUILDING TOOLS

MakaVarlabl.(VwlAThrsh, CvS,
Got lntager(20, 40, 33,

“Vowel amplitude threshold”))

This declares a variable with the name “VwIAThrsh”~ Whenever the user asks to
display its value, the CvS (“convert an integer to string”) procedure will be used; this
is a standard SA IL run-time procedure. Whenever the user asks to change the value,
the kernel-supplied Getlnteger procedure will be used. This procedure will prompt the
user for a new value for VwlAThrsh; If the user asks for the default, it will be 33. It
the user specifies a new value, Getiriteger will guarantee that it will be not less than
20 nor greater than 40. Also, If the user responds with a “?“, he will be further
prompted w ith the comment string. -

The terminal interaction facility has a number of additional features which make
it convenient to use without remembering a. vast-- amount of detail: cliche files, defauit
values, a spelling corrector and automatic abbreviation recognizer for variable and
command names, user-defined prompts (comments on the meaning and range of
variables and commands), range checking on parameter values, and menu display
capabilities for determining the variables and commands available within a specific KS
and at the system level. These features make it possible for the system to be
somewhat self-documenting. This is important because it is difficult to keep manuals
up-to-date in a complex, evolving system.

- Another requirement for the use of the system is that the user be able to regain
control from an executing system when certain types of events occur. There are three
kinds of Interrupts that can stop the system and place the researcher in communication -

with the terminal interaction facility: The user can cause an asynchronous interrupt
from his terminal any time the system is executing; this causes the system to halt and

-
allows him to access the interface routines. t3reakpolnts may be set which will cause
the system to halt at predetermined points in its execution. Internet error conditions
•Iso cause interrupts. After processing an interrupt, the user can cause the system to
continue or can abort execution.

Analysis Facilities - -

As described In the introduction, understanding and improving the system comes
largely from analyzing experiments made with the system. The kinds of data that need
to ho analyzed include both the final results of running the system (i.e., its “outputs”)
and the intermediate results (i.e., the internal processing that causes the final results).
For example, the final output of an execution of the Hearsay-il system on a spoken
utterance is the system’s interpretation of that utterance; an analysis of this could
mean determining ~o what degree the result is correct (e.g., matched the intention of

16 -,


~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SYSTEM-BUILDING TOOLS

the speaker). Intermediate results of Hearsay-Il most often of interest are hypotheses
on the blackboard; analyses of these might include a determination of how correct the
hypotheses are, as well as assignment of credit or blame for their existence to
individual KSs. Analyses often need to be aggregated over multiple runs, either to
compare the performance of different versIons of the system or to provide a statistical
validity of performance measurement.

In order to understand the internal processing of the system, a tracing facility
has been developed. This facility dumps, at selectable levels of detail, snapshots of
the state of processing. Because of the large amount of internal activity in the system,
system behavior is difficult and lime-consuming to understand from just the trace
output, even though that output is carefully formatted and at a high level of
abstrsc tion. In a typical run of one utterance in Hearsay-U, 300 to 600 KSs
activations occur. Each activation creates on the average two to three new
hypotheses. A typical data set contains about twenty-five such utterances.

In order to make the trace information more comprehendible, a mode has been
added which allows the trace facility to distinguish correct hypotheses from incorrect
ones and to mark the hypotheses on the trace output accordingly. This correct mode
requires that the system be supplied with a file specifying, for each utterance being
processed, the characteristics of the correct hypotheses at one or more levels of
representation on the blackboard. As new hypotheses are created, they are marked
“correc t” if they match those pre-specified characteristics or are correctly derived

- from correct hypotheses. Hypotheses labeled “correct” can be highlighted in the trace
out-put, as can descriptions of KS activations that are working on correct hypotheses.
Thus it becomes easy to distinguish in the trace output between areas of correct and
incorrect processing. The ability to distinguish between correct and incorrect
hypotheses also permits the automatic computation of analyses such as the average
rank order of the correct hypotheses.

Some KS problems can also be detected by using the automatic labeling of
correct hypotheses in another way, called automatic pruning. In this mode, any
incorrect hypotheses that a KS attempts to create are discarded: this guarantees that
only correct hypotheses will be on the blackboard and, thus, that alt KS activations will
have only correct hypotheses to work on. In a system in which the knowledge is
incomplete and errorful, there is no guarantee that a KS will produce correct output
given correct input, Automatic pruning identifies such problems very quickly by
elIminating all consideration of Incorrect inputs on all KS activations.

Th. ability to create and execute partial configuratIons of KSs is also useful for
making analysis more efficient. With this ability, a system which l~ smaller and
requires less computation can be used if onl y a small number of KSs are to be tested.
One can also save the results of a run of a (partial) configuration by dumping the

- 

17



- SYSTEM-BUILDING TOOLS

blackboard; the saved state can be loaded subsequently into a system with a different
configuration of KSs, saving the cost of regenerating the state. The Hearsay—Il system
is often run in two non-overlapping configurations of KSs: the first partial
configuration does preprocessing of the speech signal and the second uses those
results. With some simple changes to the command files only, a complete system (I.e.,
containing the KSs in both partial configurations) can be created and executed.

Facilit ies are also required to make it convenient to run and analyze a large
number of test cases. Often it is possible to do these analyses in an automatic manner
by post-processing the system trace output. Thus, it is important to format the output
so that it is mathine-reada~le. Appropriate header information must also be included
in the output in order to identify it; this is important because many different trace files
are produced and need to be distinguished. For Hearsay-Il, typical header information
includes the name and creation date - of th. KS configuration, ‘ settings of key 

- -

parame ters, the task vocabulary end grammar, and tho name of the utterance being 
- 

-

recognized. 
-

It is often convenient to have several concurrent destinations for trace output,
e.g., an interactive terminal, a comprehensive log file, and a file with trace information
about a particular KS. Hearsay-Il provides a mechanism so that a user is able to select
those output channels to which each kind of trace information should be routed.

Much effor t goes into making the system work well interactively. However, it is
• often desirable to run in batch-mode, in order to analyze large numbers of test cases.

A special-purpose facility has been implemented within the Hearsay-Il kernel to
facilitate batch processing. Traditional batch facilities are riot adequate for handling
the errors that occur often while running large, experimental systems. Typical errors
are running excessively long, exhausting some resource (e.g., memory space), and the
execution of an illegal operation (e.g., array subscript out of bounds or parameter
mismatch on a procedure call). Normal batch systems react to such errors by aborting
execution, perhaps with some tow-level dump of the system st ate. In order to produce
meaningful dumps, the experimental system itself needs to regain control; it can then
use its high-level display arid trace facilities to provide information for subsequent
analyses. Often, the system can recover from such errors, either continuing to process.
the same test case, or, at worst, going on to the next. In order to retain this control,

- the experimental system must be able to detect such errors before the controlling -

batch—system detects them; it must also be able to Interpret -the errors and take
appropriate action.

In order to help analyze and improve the efficiency of system execution, a
timing facility has been integrated into the kernel for use of KS and system
developers. This timing facility is a compile-time option and thus (lIke debugg ing
statements) incurs no overhead when not used. This facility allows the programmer to

18 -



- 

- 

- SYSTEM-BUIL~~NG TOOLS’

name blocks of code that are to be - timed. For each such timed block, statistics are
accumulated on the number of block entries, time spent in the block, and time spent in
the block but excluding time spent in any timed block (dynamically) nested within it.
The timing package is very economical to use: typical costs for extensive use are 4%
overhead in computation time (which the package also keeps sta tistics On) and 6%
increase in job size. The package has seen considerable use In selectively optimizing
the Hearsay II system.

CONCLUSION -

The sections on tools for configuration management, user interaction, and
analysis have indicated the large amount of thought and effort involved in system

- engineering aspects of Hearsay-li. This effort was welt spent -- without It the project
would not have been successful. We feel such en effort is necessary for the success
of any large, complex knowledge-bised system. -

A set of organizing principles found helpful in accomplishing this system
engineerIng have been described:

o The design should start with a general framework for KS interaction which is
then tailored as needed.

0 In order to implement a complex system, all the supporting levels (hardware
through programming language) must be subject to change. 

-

o The application to be implemented on top of the programming system level
shouid be Implemented as a series of levels, rather than as a single level. - 

-

o Facilities for analysis 
~~~ 

d ebugging must be an integral part of the system
design from the beginning.

By following these principles, we have found that a complex system can be constructed
and can evolve without becoming an unmanageable kiucige. -

-

ACKNOWLEDGMENTS
-

- -

Rick Fennell, Greg Gill, Gary Goodman, Richard Neely and others have
contributed to the tools developed in the course of the Hearsay efforts. Bill Broadloy ,
George Robertson, Jim Teter , Howard Wact lar, and many others have expertly made
the hardware and operating system changes changes described here. The developers
and maintainers of SAIL. at Stanford University have been very responsive over theyears -- Jim Low, John Reiser , Bob Sproull, and ban Swinehart. This paper has
benefited greatly from readings by Lee Cooprider, Mark Fox, Don McCracken, John
McDermott, and Jack Most ow.

-

L
:-

r~—— - - -

-

REFEAENCES

-

CMU Computer Science Speech Group (1977) Summary of the CMU Five-year ARPA
effort in speech understanding research. Tech. Report, Comp. Sci. Dept.,
Carnegie-Mellon Univ.

Cooprider, L. W. (1978, to appear) Representation of families of systems. Ph.D. thesis,
Comp. Sci. Dept., Carnegie-Mellon Univ.

Dijkstra , E. W. (1968) The structure of the “THr-mulliprogramming system. Comm.
ACM, I i , (5), 341-346. -

-

Erman, L. 0. (1974) An environment and system for machine understanding of
connected speech. Tech. Report, Carnegie-Mellon Univ. (Ph.D. Dissertation,
Comp. Sci. Dept., Stanford Univ.).

-

Erman, L. 0. and Lesser, V. R. (1975) A multi-level organization for problem solving
using many diverse cooperating sources of knowledge. Proc. 4th Inter. Joint
Conf. on Artificial Intelligence, Tbilisi, USSR, 483-490.

-

Flon, 1. (1975) Program design with abstract data types. Tech. Report, Comp. Sc
Dept., Carnegie-Mellon Univ. -

Guttag, .J. V. (1976) Abstract data types and the development of data structures.
Comm. ACM, 20, (6) .

Haberntnnn, A. N., Flon, L, arid Cooprider, 1. W. (19-76) Modularizatiori and hierarchy In
a family of operating systems. Comm. ACM, 19, (5), 266-272.

Habermann, A. N. (1978, to appear) On system development control.
Lesser , V. R., Fennolt, R. 0., Erman, 1. 0. and Reddy, D. R. (1975) Organization of the

Hearsay-U speech understanding system. IEEE Trans. on ASSP 23, 11-23.
Lesser , V. P. and Erman, L 0. (1977) A retrospective view of the Hearsay—Il

architecture. Proc. Inter. Joint Con!. on Artificial Intelligence, Cambridge, MA,
790-800.

Liskov, 8. (1972) The design of the VENUS operating system. Comm. ACM, 15, (3), -

144-149.
- -

- • • -Liskov, B. and ZiHes, S. (1974) Programming with abstract data types. . S,’CPLAN -

- -

-.
-

.

-

.

- . -- Notices, 9 (4), 50-59. -
- -

Newell, A., Barnett, J., Forgie, J., Green, C., i<latt , 0., Licklider , J. C. R., Munson, J.,
Reddy, R. and Woods, W. (1973) Speech Understanding Systems: Final Report
of a Study Group. North-Holland. -

- -
-

-

Parnas, 0. 1. (1972) On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15, (12), 1053-105& -

- ‘
-

-

-

Reddy, 0. P., Errnan, L D., Fennel l, R. 0. and Neely, P. B. (1973) The Hearsay speech
understanding system: an example of the recognition process. Proc. 3rd IJCAI, -

-

Stanford, CA, 185-193. -

-

Reiser, J. F. (1976) SAIL Stanford Artificial Intel. Lab., Memo AIM-2-89. -

Wuif , W. A., London, R. A., and Shaw, M. (1976) An introduction to the construction and
verification of Alphard programs. IEEE Trans. ~‘eft ware Eng., 2, (4), 253-265.

20

